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1. Introduction 

With the Biodiversity and Climate Change Project (BIOCLIME), Germany supports Indonesia's efforts to 

reduce greenhouse gas emissions from the forestry sector, to conserve forest biodiversity of High Value 

Forest Ecosystems, maintain their Carbon stock storage capacities and to implement sustainable forest 

management for the benefit of the people. Germany's immediate contribution will focus on supporting 

the Province of South Sumatra to develop and implement a conservation and management concept to 

lower emissions from its forests, contributing to the GHG emission reduction goal Indonesia has 

committed itself until 2020. 

One of the important steps to improve land-use planning, forest management and protection of nature 

is to base the planning and management of natural resources on accurate, reliable and consistent 

geographic information. In order to generate and analyze this information, a multi-purpose monitoring 

system is required. 

This system will provide a variety of information layers of different temporal and geographic scales: 

 Information on actual land-use and the dynamics of land-use changes during the past decades 

is considered a key component of such a system. For South Sumatra, this data is already available 

from a previous assessment by the World Agroforestry Center (ICRAF). 

 Accurate current information on forest types and forest status, in particular in terms of 

aboveground biomass, carbon stock and biodiversity, derived from a combination of remote 

sensing and field techniques. 

 Accurate information of the historic fire regime in the study area. Fire is considered one of the 

key drivers shaping the landscape and influencing land cover change, biodiversity and carbon 

stocks. This information must be derived from historic satellite imagery. 

 Indicators for biodiversity in different forest ecosystems and degradation stages. 

The objective of the work conducted by Remote Sensing Solutions GmbH (RSS) was to support the goals 

of the BIOCLIME project by providing the required information on land use dynamics, forest types and 

status, biomass and biodiversity and the historic fire regime. The conducted work is based on a wide 

variety of remote sensing systems and analysis techniques, which were jointly implemented within the 

project, in order to produce a reliable information base able to fulfil the project’s and the partners’ 

requirements on the multi-purpose monitoring system. 

This report presents the results of Work Package 4 (WP 4): Historic fire regime. 

The key objective of this work package was the generation of burned area maps for different years based 

on optical satellite data. The years for classification were selected based on the numbers of hotspots 

(MODIS) per year and precipitation distributions. Only the burned areas for severe fire years were 

classified (1997, 1999, 2002, 2004, 2006, 2009, 2011, 2012, 2014 and 2015). Historic satellite data 

(Landsat-5, Landsat-7 and Landsat-8) was utilized from the period 1997 onwards to assess the historic 

fire regime. Burned areas were classified based on the combination of two methodologies to increase 

accuracy. The result of the classification is a yearly map of burned areas within the boundaries of the 

BIOCLIME study area. Based on these maps a fire frequency map was derived in order to locate areas of 

higher and lower fire frequency. Based on these annual burned areas emissions were calculated to assess 

the amount of carbon emitted, from the vegetation cover and the peat soil. The results are annual and 

total emissions from aboveground biomass, peat burning within the BIOCLIME study area. 

The approach chosen to assess the historic fire regime is transferrable to other optical satellite sensors. 

The workflow is shown in Figure 1. 
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Figure 1: Workflow of the historic fire regime analysis 

 

2. Methodology 

2.1 Selection of annual mid resolution images for the years 1990 – 2014 

In a first step, the fire season of each year was analyzed on the basis of monthly precipitation and MODIS 

active fire hotspot data. The latest MODIS Collection 6 hotspot data was provided by the University of 

Maryland's Fire Information for Resource Management System (FIRMS) as point shapefiles for the time 

period 2000 onwards. Each hotspot / active fire detection represents the center of a 1 km2 pixel flagged 

as containing at least one active fire. The pixel center, and the derived shapefile point location, is not 

necessarily the real location of the active fire event due to the coarse resolution of the data. The fire 

season of the pre-MODIS era (before the year 2000) was investigated based on active fire data from the 

Forest Fire Prevention and Control Project of the European Union and the South Sumatra Forest Fire 

Management Project (SSFFMP). In addition, the Oceanic Niño Index (available at: 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml), indicating El 

Niño years with higher fire occurrence, was additionally implemented as indicator for fire seasons with 

high fire probability. Figure 2 shows an example of a fire season analysis based on precipitation and 

active fire data. 

 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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Figure 2: Example of a fire season analysis for a given year based on precipitation data and MODIS 

active fire data. 

 

Available mid-resolution multispectral imagery was selected from fire season start to approximately two 

months after fire season end. Landsat-5, Landsat-7 or Landsat-8 images were used for the assessment 

of the annual burned area. Due to the fast regrowth of vegetation scenes acquired during or shortly 

after the fire events (mostly during August to October) detect burn scars with higher confidence than 

scenes acquired outside this period. If no or not enough images were available during or shortly after 

the fire season (cloud or haze cover), images acquired before the next fire season of the following year 

were considered. In total, five Landsat tiles are necessary to cover the four districts of the BIOCLIME 

project area (Figure 3). 
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Figure 3: Five Landsat tiles are needed to cover the BIOCLIME project area. 

 

Figure 4 displays the number of MODIS hotspots within the BIOCLIME project area, the years selected 

for burn area mapping and the number of Landsat scenes considered for the mapping years. 
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Figure 4: The upper diagram shows the number of MODIS hotspots within the BIOCLIME project area 

from 1997 to 2014. Red bars indicate the years selected for mapping, yellow bars indicate the years 

not mapped. The lower diagram depicts the number of considered Landsat scenes for the years 

mapped. 

 

DATA LIMITATIONS: 

The limitations of the historic Landsat imagery used for burn scar detection are given by the technical 

structure of the instrument itself and the environmental conditions during the acquisition. The technical 

features of the used satellites sensors are shown in Table 1, Table 2 and Table 3. 
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Table 1: Technical features of the Landsat 5 sensor (Thematic Mapper (TM) 

Landsat 

5 (8bit) Thematic 

Mapper 

(TM) 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 0.45-0.52 30 

Band 2 0.52-0.60 30 

Band 3 0.63-0.69 30 

Band 4 0.76-0.90 30 

Band 5 1.55-1.75 30 

Band 6 10.40-12.50 120* (30) 

Band 7 2.08-2.35 30 

 

Table 2: Technical features of the Landsat 7 sensor (Enhanced Thematic Mapper plus 

(ETM+) 

Landsat 7 (8bit) 

Enhanced 

Thematic Mapper 

Plus (ETM+) 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 0.45-0.52 30 

Band 2 0.52-0.60 30 

Band 3 0.63-0.69 30 

Band 4 0.77-0.90 30 

Band 5 1.55-1.75 30 

Band 6 10.40-12.50 60 * (30) 

Band 7 2.08-2.35 30 

Band 8 0.52-0.90 15 
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Table 3: Technical features of the Landsat 8 sensor (Operational Land Imager (OLI) 

Landsat 8 (12bit) 

Operational Land 

Imager (OLI) 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal 

aerosol 
0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near 

Infrared (NIR) 
0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - 

Panchromatic 
0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal 

Infrared (TIRS) 1 
10.60 - 11.19 100 * (30) 

Band 11 - Thermal 

Infrared (TIRS) 2  
11.50 - 12.51 100 * (30) 

 

The spatial resolution of the optical bands and the SWIR (short wave infrared) bands used for 

classification is 30 meters.  

The smallest feature that can be mapped is equal to one pixel (30 m x 30 m for Landsat data used in 

study). However, it is agreed upon that the smallest observable feature that can be reliably identified 

needs to consist of more than one contiguous pixels. The reason is that a feature with a size of only one 

pixel will almost never fall entirely within one pixel, but will instead be split across up to four pixels. 

Therefore, the feature’s reflectance would make up only a fraction of those pixels and thus could not be 

reliably classified. In order to avoid this effect, a Minimum Mapping Unit (MMU) of 0.5 ha was introduced, 

representing the smallest possible unit to map. 

Furthermore, on May 31, 2003, the Scan Line Corrector (SLC), which compensates for the forward motion 

of Landsat 7, failed and since leads to stripes in the data without information (see Figure 5). 
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Figure 5: Landsat 7 SLC-off mode, data stripes. 

 

A final constrain concerns the dependency of optical sensors on the atmospheric conditions. Clouds, 

haze and smoke hamper the opportunity to map burned areas, simply because the burned areas cannot 

be seen. These limitations were diminished using numerous overlapping scenes to be able to classify as 

many burned areas as possible. 

2.2 Preprocessing: Radiometric and atmospheric correction  

The pre-processing for Landsat data consisted of the removal of atmospheric distortions (scattering, 

illumination effects, adjacency effects), induced by water vapor and aerosols in the atmosphere, 

seasonally different illumination angles, etc. An atmospheric correction was applied to each image using 

the software ATCOR (Richter and Schläpfer 2014). This pre-processing step leads to a calibration of the 

data into an estimation of the surface reflectance without atmospheric distortion effects including 

topographic normalization. This calibration method facilitates a better scene-to-scene comparability of 

the radiometric measurements, which is a necessary precondition for the semi-automatic segment-

based rule-set classification method applied in this study and the proposed monitoring system. 

2.3 Image segmentation 

The satellite images were then used as input for burned area classification using an object-based image 

analysis approach. The first step of the object-based approach is to generate so called “image-objects” 

which combines spatially adjacent and spectrally similar groups of pixels, rather than individual pixels of 

the image (pixel-based approach). 

Traditional pixel-based classification uses multi-spectral classification techniques that assign a pixel to a 

class by considering the spectral similarities with the class or with other classes. The resulting thematic 

classifications are often incomplete and non-homogeneous, in particular when being applied to high 

resolution satellite data and when mapping spectrally heterogeneous classes such as forest. The received 
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signal frequency does not clearly indicate the membership to a land cover class, e.g. due to atmospheric 

scattering, mixed pixels, or the heterogeneity of natural land cover.  

Improving the spatial resolution of remote sensing systems often results in increased complexity of the 

data. The representation of real world objects in the feature space is characterized by high variance of 

pixel values, hence statistical classification routines based on the spectral dimensions are limited and a 

greater emphasis must be placed on exploiting spatial and contextual attributes (Matsuyama 1987, 

Guindon 1997, 2000). To enhance classification, the use of spatial information inherent in such data was 

proposed and studied by many researchers (Atkinson and Lewis 2000).  

Many approaches make use of the spatial dependence of adjacent pixels. Approved routines are the 

inclusion of texture information, the analysis of the (semi-)variogram, or region growing algorithms that 

evaluate the spectral resemblance of proximate pixels (Woodcock et al. 1988, Hay et al. 1996, Kartikeyan 

et al. 1998). In this context, the use of object-oriented classification methods on remote sensing data 

has gained immense popularity, and the idea behind it was subject to numerous investigations since the 

1970’s (Kettig and Landgrebe 1976, Haralick and Joo 1986, Kartikeyan et al. 1995). 

2.4 Mapping annual burned areas: spatial extent and fire severity 

Burned areas were classified based on burn ratios (BR) of bands b0.84µm, b2.22µm, and b11.45µm: 

BR1 = (b0.84µm - b11.45µm) / (b0.84µm + b11.45µm) (eq. 1) 

where b0.84µm is the reflectance value of Near Infrared (0.76-0.90 µm) and b11.45µm is the reflectance value 

of Thermal Infrared (10.4-12.5µm).  

BR2 = (b0.84µm - b2.22µm) / (b0.84µm + b11.45µm) (eq. 2) 

where b0.84µm is the reflectance value of Near Infrared (0.76-0.90 µm), b2.22µm is the reflectance value of 

Mid-Infrared (2.08-2.35 µm) and b11.45µm is the reflectance value of Thermal Infrared (10.4-12.5µm).  

NBR = (b0.84µm - b2.22µm)/(b0.84µm + b2.22µm) (eq. 3) 

where b0.84µm is the reflectance value of Near Infrared (0.76-0.90 µm) and b2.22µm is the reflectance value 

of Mid-Infrared (2.08-2.35 µm).  

The Normalized Burn Ratio (NBR) was used to assess the fire intensity. The ratios BR1 and BR2 have 

already been successfully applied for burned area mapping in the province Riau, Sumatra (Baier 2014). 

Additionally, the normalized difference vegetation index (NDVI) was calculated to improve the detection 

of clouds, water and burned areas. 

NDVI = (b0.84µm - b0.66µm)/(b0.84µm + b0.66µm) (eq. 4) 

where b0.84µm is the reflectance value of Near Infrared (0.76-0.90 µm) and b0.66 µm is the reflectance value 

of red (0.64 - 0.67µm).  

Burned area classification was conducted on 15 Landsat images to find a fixed threshold (mean threshold 

value of the 15 Landsat images) which then was applied to all Landsat scenes. Thresholds were 

determined for BR1, BR2 and NBR. Previous work has shown that BR1 and BR2 are more useful than NBR 

for classifying burned areas as the influence of haze or shadow is minimized. Figure 6 shows an example 

of a Landsat 8 subset and the overall workflow from the initial image to the final classification. Each 

classification result was manually post-processed to eliminate misclassifications. Burned areas were 

exported as a shapefile and merged for each fire year.  
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Figure 6: Processing steps from atmospheric correction of the Landsat data to the segmentation and 

finally the classification. 

 

2.5 Mapping approaches 

We combined two object-based approaches to overcome particular limitations of each single approach. 

Combining both outputs lead to the best results of burned area classification. After the automatic 

classification manual revision was necessary especially in areas with a lot of smoke and/or haze. 

A water and cloud-mask was applied to all images before processing based on the normalized difference 

water index (NDWI) and Cloud-Index (based on the Quality Assessment band provided by USGS) in order 

to avoid misclassifications in water and cloud/cloud shadow areas.  

 

NDWI = (b0.84µm – b1.57µm)/(b0.84µm + b1.57µm) (eq. 5) 

 

Where b0.84µm is the reflectance value of Near Infrared (0.76 - 0.90 µm) and b1.57µm is the reflectance value 

of Short Wave Infrared (1.57 – 1.65µm). 

 

Figure 7 depicts graphically the two approaches and their combination. 
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Figure 7: This figure represents both burned are classification workflows and their fusion. 
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The following three paragraphs will explain the difference between the two approaches, their strength 

and limitations as well as the final combination of both. 

1.1.1 Approach 1 - Object based classification based on single scene 

In the single scene approach, burned areas were classified based on one Landsat scene utilizing the 

derived burn ratios described above. The settings for segmentation and classification enable the 

detection of small scale burned areas (little agricultural fields) to large scale forest fires. 

Thresholds for classifying burned areas were defined by a variable approach based on Landsat image 

statistics. Fixed thresholds were used for all Landsat scenes, whereas they had to be adjusted for Landsat 

8 and Landsat 5/7 due to slightly different wavelengths characteristics. As a last step, the MMU was 

applied and objects were smoothened.  

LIMITATIONS: 

The main limitation of the single scene approach is the detection of burned areas in areas with haze. 

Even though the scenes were atmospherically corrected, the influence of thick haze and/or smoke cannot 

fully be diminished. Having numerous scenes with haze and or smoke (fire season) lead to the idea of 

combining this approach with a multi-temporal approach to overcome this limitation (see approach 2).  

1.1.2 Approach 2 - Object based multi scene change detection (t1 – t2) 

The multi scene approach is based on images with a maximum sensing difference of 32 days which were 

stacked and segmented based on the multiple spectral bands and the derived Indices (based on an 

approach by Melchiori et al. 2014).  

Burn areas were classified by the mean spectral values of an object for the change rate (CR) and the 

difference (D) CRNDVI, CRNBR, DNBR and NBR. Different thresholds (t) were used for Landsat 8 and 

Landsat 5/7. 

 

𝑐𝑟𝑛𝑑𝑣𝑖 =
𝑛𝑑𝑣𝑖(𝑡1) − 𝑛𝑑𝑣𝑖(𝑡2)

𝑎𝑏𝑠(𝑛𝑑𝑣𝑖(𝑡1))
 (eq. 6) 

𝑐𝑟𝑛𝑏𝑟 =
𝑛𝑏𝑟(𝑡1) − 𝑛𝑏𝑟(𝑡2)

𝑎𝑏𝑠(𝑛𝑏𝑟(𝑡1))
 (eq. 7) 

𝑑𝑛𝑏𝑟 = 𝑛𝑏𝑟(𝑡1) − 𝑛𝑏𝑟(𝑡2) (eq. 8) 

𝐵𝑢𝑟𝑛𝑚𝑎𝑠𝑘 = (𝑐𝑟𝑛𝑏𝑟 ≥ 𝑇𝑐𝑛𝑏𝑟) ∗ (𝑐𝑟𝑛𝑑𝑣𝑖 ≥ 𝑇𝑐𝑟𝑛𝑑𝑣𝑖) ∗ (𝑑𝑛𝑏𝑟 > 𝑇𝑑𝑛𝑏𝑟) (eq. 9) 

 

LIMITATIONS: 

The main limitation of this approach is the frequent cloud cover in the tropics. Having a cloud in one of 

the compared scenes hampers the detection of burned areas (see Figure 8). Therefore, both scenes have 

to be cloud free for classification. However, this approach is superior to approach 1 in areas covered by 

haze. Another effect that was detected was the classification of bare areas in oil palm plantations which 

were classified as burned area. 
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Figure 8: This figure depicts the limitations of the multi scene approach. Clouds in one of the time 

steps prevent a classification in the cloud free time step. 

 

1.1.3 Combining Approach 1 & Approach 2 

The final derived classification is a combination of these two approaches to grant high accuracy and 

diminish false positives. The aforementioned limitations of both approaches are reduced via the 

combination of both approaches (see Figure 7). Additionally, the selection of all available Landsat scenes 

(instead of one cloud free single scene) for classification increased the accuracy. Figure 9 displays a 

comparison of single scene and multi scene approach for burned area detection. 

 

 

Figure 9: Comparison of single scene and multi scene approach for burned area detection. 
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2.6 Pre-fire vegetation, area burned and fire frequency 

The historic fire regime was analyzed in terms of pre-fire vegetation, fire frequency, and area burned. 

Fire frequency was evaluated by cumulative merging and intersection of the annual burned areas (see 

Figure 21). The land cover classification produced by ICRAF for the years 1990, 2000, 2005, 2010 and 

2014 (see Work Package 1 (WP 1) was used in order to assess pre-fire land cover class. This helps the 

identification of the drivers of deforestation. Furthermore, this allows an estimation of the carbon 

emissions released by fire in South Sumatra since 1990. 

Finally, a shapefile was generated containing the following attributes: fire frequency, year of fire(s), pre-

fire land cover class and spatial extent (area).  

2.7 Accuracy assessment  

At the time this report was compiled, no historic reference data was available on burned areas. Therefore, 

an accuracy assessment could not be conducted. 

2.8 Emissions calculation 

To calculate the emissions by the fires for each year, the aboveground emissions and peat emissions 

were calculated. Summing these products up leads to total emissions for each single mapped year. We 

used the stratify & multiply approach to calculate carbon stock maps from the land cover classifications 

of Work Package 1 (WP 1) in combination with the local aboveground biomass values derived in Work 

Package 3 (WP 3), and intersected those carbon stock maps with the fire frequency map for the 

calculation of the emissions. Emissions are reported in tons of carbon (t C). 

Using the stratify & multiply approach for emission calculation first a stratification needs to be applied. 

We used the ICRAF land cover classification v3 product. This dataset then is intersected with the burned 

area product of each single year mapped. Each stratum (in our case each land cover class) is attributed 

with an emission factor (aboveground biomass value) which was derived in WP 3 by using the LiDAR 

based aboveground biomass (AGB) model and the high spatial resolution land cover maps from Work 

Package 2 (WP 2). This increases the accuracy of the emissions drastically because the local variations of 

land cover and biomass directly feed into the emission calculations. To calculate the carbon content of 

a certain stratum, the biomass is simply divided by 2 (i.e. a carbon content of 0.5 is assumed). By 

multiplying the burned area with the carbon stock the carbon emissions from burning biomass are 

calculated.  

In addition, the carbon emissions from peat burning were calculated. Peat stores huge amount of carbon 

and therefore leads to huge emissions when ignited. To calculate these emissions, we used the approach 

by Konecny et al. (2016), which discriminates between first, second and or more fires with regard to the 

peat burn depth, and therefore the amount of carbon which is released.  

To generate the peat emissions the land cover, burned area and peat layers (Peatland distribution for 

2016 created by Ministry of Environment and Forestry (MoEF) (see Figure 10)) were intersected. Similar 

to the emission estimation from AGB, the pre-fire land cover is taken into consideration. 
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Figure 10: The peatland distribution within the BIOCLIME study area. Derived from the peatland 

distribution map for 2016 created by the Ministry of Environment and forestry (MoEF). 

 

Burned areas within formerly forested peatlands are considered to be first-fires and therefore a burn 

depth of 17 cm is applied (see Konecny et al. 2016). All other land cover classes are then assigned to 

second or more fires with a reduced burn depth. So we only discriminate two different stages of fires 

(first and second or more).  

In addition, as we only have the land cover for 1990, 2000, 2005, 2010, 2014 and 2015, we assumed an 

AGB value of 0 for an area which has been burned twice within one-time window (e.g. 1998 and already 

burned in 1997), so no emissions from aboveground biomass burning from the second fire. For the peat 

emissions in such a case this would be classified as second or more fires. Finally, the aboveground 

emissions and the peat emissions are summed up to get a total number of emissions for the BIOCLIME 

project area for the designated years. These results are spatially explicit. This allows to exactly determine 

regions with higher and lower emissions. 
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3. Results 

3.1 Burned area 

Burned area maps for 9 different years (1997, 1999, 2002, 2004, 2006, 2009, 2011, 2012 and 2014) were 

generated (see Figure 11: Burned area map for the year 1997.Figure 11 to Figure 19). In addition, a 

burned area map for 2015 based on Sentinel-1 RADAR data was provided from the ESA (European Space 

Agency) funded Fire CCI (Climate Change Initiative) project, and was integrated into the analysis and 

results (see Figure 20).  

Based on these maps a fire frequency map (a compilation of the single year classifications) was derived 

(see Figure 21). 
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Figure 11: Burned area map for the year 1997. 
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Figure 12: Burned area map for the year 1999. 
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Figure 13: Burned area map for the year 2002. 
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Figure 14: Burned area map for the year 2004. 
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Figure 15: Burned area map for the year 2006. 
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Figure 16: Burned area map for the year 2009. 
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Figure 17: Burned area map for the year 2011. 
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Figure 18: Burned area map for the year 2012. 
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Figure 19: Burned area map for the year 2014. 
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Figure 20: Burned area map for the year 2015 based on Sentinel-1 data (CCI Fire Project). 
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Figure 21: Fire frequency map combining the burned areas of the years 1997, 1999, 2002, 2004, 2006, 2009, 2011, 2012, 2014 and 2015. 
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Table 4 shows the number of satellite scenes used, the amount of hotspots detected and the total area 

burned for each year. For the years 1997 (333,931 ha) and 2015 (323,397 ha), by far, the most area burned 

was detected, with 1997 even higher than 2015. 

 

Table 4: Statistical information about the classified years. Shown are the 

number of satellite scenes used, the amount of hotspots detected and 

the total area burned for each year. 

Year No. Scenes Hotspots Total Area Burned [ha] 

1997 18 16,573 333,931 

1999 30 1,888 64,009 

2002 37 2,216 119,204 

2004 46 2,515 120,029 

2006 46 5,494 243,560 

2009 57 1,875 68,172 

2011 40 2,592 89,310 

2012 29 3,319 164,246 

2014 41 1,755 53,440 

2015 Sentinel-1 8,582 323,397 

 

Figure 22 and Figure 23 display a comparisons between the yearly burned area classified and the amount 

of hotspots detected for the years 1997, 1999, 2002, 2004, 2006, 2009, 2011, 2012, 2014 and 2015. From 

these figures it is visible that there is a general trend, but no definite correlation between the amount of 

hotspots detected and the area burned, so that a direct deduction of burned area from hotspots should 

always be treated with caution. For example for the years 2004 and 2011 similar amounts of hotspots 

were detected but in 2004 much more area burned than in 2011 (see also Table 4 ). 

 

 

Figure 22: Graph depicting the number of MODIS Hotspots detected during the selected years within 

the BIOCLIME study area and the mapped burned area for each year in hectares. 
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Figure 23: Graph depicting the number of MODIS Hotspots detected during the selected years within 

the BIOCLIME study area and the mapped burned area for each year in hectares. 

 

3.2 Pre-fire vegetation 

Figure 24 depicts the area burned per land cover class for each year. 

In 1997 the share of burned primary forest is by far the biggest compared to the other years. 165,865 ha 

of “Primary swamp forest”, 17,710 ha of “Primary dry land forest” and also 3,282 ha of “Primary mangrove 

forest” burned in 1997. In total this sums up to 186,857 ha of burned primary forest in 1997. The second 

largest primary forest burning in the BIOCLIME project area took place in 2006 with only (compared to 

1997) 17,133 ha of burned primary forest in total. The burning of the land cover class “Tree crop 

plantation” is increasing over the years and in 2015 more than 106,773 ha of it burned. The same increase 

over time is visible for the class “plantation forest” where more than 29,275 ha burned in 2015. There is 

a clear change in ratio of land cover classes burned over the last two decades. 

Appendix A gives a detailed overview of the burned area per land cover class and year. 
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Figure 24: This graph depicts which land cover has burned to which extend within the different years. 
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3.3 Emissions 

Table 5 depicts the aboveground carbon emissions for each mapped year, as well as the peat emissions 

and the total emissions in megatons of carbon (Mt C). The highest emissions were calculated for 1997 

with 46.71 Mt C followed by 2015 with 21.42 Mt C, 2006 with 16.07 Mt C and 2012 with 8.05 Mt C. Further 

it is visible that emissions are not directly connected to the total burned area. This is also shown in Figure 

25, where the X-Axis depicts the years, the Y-Axis the burned area in hectares and the diameter of the 

circles the amount of carbon emissions. It can be concluded that different land covers lead to different 

emissions, further the distribution of the peat layer also plays an important role in the amount of 

emissions. 

 

Table 5: Emissions per year megatons of carbon (Mt C), split 

up into aboveground (above) and peat emissions. 

Year 
Area burned 

(ha) 

Emissions (Mt C) 

Above Peat Total 

1997 333,931 26.99 20.36 47.35 

1999 64,009 3.87 2.01 5.88 

2002 119,204 3.02 2.96 5.98 

2004 120,029 3.18 3.17 6.35 

2006 243,561 7.41 9.45 16.86 

2009 68,172 1.84 1.49 3.33 

2011 89,310 2.19 3.64 5.83 

2012 164,246 2.92 5.70 8.62 

2014 53,440 1.03 1.67 2.70 

2015 323,397 7.15 14.26 21.42 

Total 1,579,297 59.60 64.71 124.31 

 

 

Figure 25: The burned area in ha (Y-axis) for each mapped year (X-axis). The diameter of each circle 

depicts the emissions in megatons of carbon (Mt C). 
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Figure 26 Displays the total emissions divided into aboveground and peat emissions in megatons of 

carbon (Mt C). this figure shows that the ratio of emissions from aboveground biomass to peat changes 

over time. In the past proportionally more emissions were from aboveground biomass burning whereas 

in recent years proportionally more emission from peat burning. 

 

 

Figure 26: Total emissions divided into aboveground and peat emissions in megatons of carbon 

(Mt C). The light red bars depict the carbon emissions of the aboveground biomass (ABOVE) and the 

dark red bars the peat emissions (PEAT). 

 

Table 6 depicts the fraction of burned area within the land cover class “No data”. For these areas 

emissions were set to zero and therefore have an impact on the total emissions per year. This should be 

taken into consideration regarding the assessment of the emissions, because no aboveground emissions 

could be calculated for these areas. If the class “No data” occurred on peat, the value for second or more 

fires was applied. 
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Table 6: The burned area per year within the land cover class "No data". 
Year Area burned (ha) No data (ha) Percentage 

1997 333,931 17,646 5.28% 

1999 64,009 7,090 11.08% 

2002 119,204 13,591 11.40% 

2004 120,029 12,538 10.45% 

2006 243,560 22,904 9.40% 

2009 68,172 4,782 7.02% 

2011 89,310 12,778 14.31% 

2012 164,245 17,402 10.59% 

2014 53,440 514 0.96% 

2015 323,397 3,244 1.00% 

Total 1,579,297 112,489 7.12% 

 

4. Conclusions 

Following conclusions could be drawn (separated into burned area, carbon emissions from fires and 

ratio between carbon emission from aboveground biomass and peat burning). 

Burned area 

 A direct deduction of burned area from the amount of fire hotspots should always be treated 

with caution (only general trend). 

 In 1997 the share of burned Primary Forest is by far the biggest. 

 The second largest Primary Forest burning took place in 2006. 

 The burning of the land cover classes Tree Crop Plantation and Plantation Forest is increasing 

over the years. 

 There is a clear change in ratio of land cover classes burned over the last two decades. 

Carbon emission from fires 

 The years with the highest carbon emissions (megatons of carbon Mt C) from fire were: 

 1997 with 46.71 Mt C (megatons of carbon) 

 2015 with 21.42 Mt C 

 2006 with 16.07 Mt C 

 2012 with 8.05 Mt C 

 Emissions are not directly connected to the total burned area. 

 Different land covers lead to different emissions, further the distribution of the peat layer also 

plays an important role in the amount of emissions. 

Ration between carbon emissions from aboveground biomass and peat burning 

 The ration of emissions from aboveground biomass to peat burning changes over time. 

 In the past proportionally more emissions from aboveground biomass burning. 

 In recent years proportionally more emissions from peat burning. 
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5. Outlook 

A next step would be to harmonize results from the carbon plots (Work Package 3). As the aboveground 

biomass calculations derived by the experts from the Bogor Agricultural University (IPB) are based on 

more differentiated allometric equations (e.g. species specific) it is recommended to use these 

aboveground biomass estimates to calibrate the LiDAR based aboveground biomass model in Work 

Package 3, which would lead to revised local aboveground biomass values for the different vegetation 

classes. This consequently would lead to a recalculation of the aboveground fire emissions (also for Work 

Packages 1 and 2). 

 

Outputs / deliverables 

 

 Vector data of fire frequency combining the burned areas of the years 1997, 1999, 2002, 2004, 

2006, 2009, 2011, 2012, 2014 and 2015 (.shp format) 

 Statistics on burned areas and emissions (tables in final report) 

 Final report (.docx format) 
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Appendix A 

 

Burned area per land cover class (ICRAF 1990) and year (1997 and 1999). 

  ICRAF 1990 

  1997 1999 

BAPLAN LCC (translated from ICRAF) area [ha] area [ha] 
Burned already 

1997 [ha] 
burned area 

[ha] 

Tree crop plantation 28,158 15,564 1,478 14,086 

Dry land agriculture 320 63 13 51 

Embankment 0 0 0 0 

Grass 12,119 2,621 733 1,889 

Mixed dryland agriculture/mixed garden 3,298 2,498 451 2,047 

No data 17,646 7,090 905 6,185 

Open land 1,436 155 61 95 

Plantation forest 0 0 0 0 

Primary dry land forest 17,710 9,924 1,565 8,359 

Primary mangrove forest 3,282 195 36 159 

Primary swamp forest 165,865 11,503 2,943 8,559 

Rice fields 15,702 4,609 1,203 3,406 

Scrub 10,920 2,103 599 1,504 

Secondary/ logged over  swamp forest 46,056 5,220 1,600 3,621 

Secondary/ logged over dry land forest 3,596 860 79 781 

Secondary/ logged over mangrove forest 408 32 3 29 

Settlement/ developed land 412 100 28 72 

Water body 7,002 1,471 257 1,214 

          

Sum 333,931 64,009 11,951 52,059 
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Burned area per land cover class (ICRAF 2000) and year (2002 and 2004). 

  ICRAF 2000 

  2002 2004 

BAPLAN LCC (translated from ICRAF) area [ha] area [ha] 
Burned already 

2002 [ha] 
burned area 

[ha] 

Tree crop plantation 42,482 45,962 5,275 40,687 

Dry land agriculture 128 94 8 86 

Embankment 5 25 2 23 

Grass 3,022 1,109 283 826 

Mixed dryland agriculture/mixed garden 4,135 2,295 342 1,953 

No data 13,591 12,538 1,242 11,296 

Open land 3,154 2,923 747 2,176 

Plantation forest 248 314 7 307 

Primary dry land forest 765 704 10 694 

Primary mangrove forest 366 170 26 144 

Primary swamp forest 7,867 9,933 1,288 8,645 

Rice fields 13,106 5,812 1,770 4,041 

Scrub 11,071 6,376 1,521 4,855 

Secondary/ logged over  swamp forest 12,574 26,191 2,596 23,595 

Secondary/ logged over dry land forest 2,296 2,157 54 2,102 

Secondary/ logged over mangrove forest 191 184 15 169 

Settlement/ developed land 986 1,029 278 751 

Water body 3,217 2,212 314 1,898 

          

Sum 119,204 120,029 15,779 104,250 
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Burned area per land cover class (ICRAF 2005) and year (2006 and 2009). 

  ICRAF 2005 

  2006 2009 

BAPLAN LCC (translated from ICRAF) area [ha] area [ha] 
Burned already 

2006 [ha] 
burned area 

[ha] 

Tree crop plantation 90,159 31,863 5,692 26,171 

Dry land agriculture 1,198 309 46 263 

Embankment 1 0 0 0 

Grass 2,177 550 138 412 

Mixed dryland agriculture/mixed garden 9,634 2,531 546 1,986 

No data 22,931 4,787 929 3,859 

Open land 2,112 738 138 600 

Plantation forest 6,179 2,155 344 1,811 

Primary dry land forest 883 904 8 897 

Primary mangrove forest 183 64 44 20 

Primary swamp forest 16,068 4,935 1,048 3,887 

Rice fields 10,276 2,643 535 2,109 

Scrub 12,071 3,595 1,562 2,034 

Secondary/ logged over  swamp forest 57,358 8,695 2,902 5,793 

Secondary/ logged over dry land forest 6,969 2,816 170 2,646 

Secondary/ logged over mangrove forest 89 122 8 114 

Settlement/ developed land 1,424 381 106 275 

Water body 3,849 1,083 240 843 

          

Sum 243,560 68,172 14,455 53,717 
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Burned area per land cover class (ICRAF 2010) and year (2011 and 2012). 

  ICRAF 2010 

  2011 2012 

BAPLAN LCC (translated from ICRAF) area [ha] area [ha] 
Burned already 

2011 [ha] 
burned area 

[ha] 

Tree crop plantation 34,422 70,338 5,130 65,208 

Dry land agriculture 2,081 4,598 503 4,094 

Embankment 8 61 1 60 

Grass 3,115 9,728 691 9,037 

Mixed dryland agriculture/mixed garden 1,570 3,189 231 2,958 

No data 12,778 17,402 1,637 15,765 

Open land 370 1,090 111 978 

Plantation forest 2,237 5,988 280 5,708 

Primary dry land forest 80 52 2 50 

Primary mangrove forest 18 108 0 108 

Primary swamp forest 5,351 4,362 540 3,821 

Rice fields 2,702 14,914 847 14,067 

Scrub 6,211 9,717 1,390 8,326 

Secondary/ logged over  swamp forest 14,513 13,074 1,335 11,739 

Secondary/ logged over dry land forest 1,610 3,565 148 3,417 

Secondary/ logged over mangrove forest 207 366 20 345 

Settlement/ developed land 710 1,572 120 1,453 

Water body 1,326 4,123 178 3,946 

          

Sum 89,310 164,245 13,167 151,079 
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Burned area per land cover class (ICRAF 2014) and year (2014 and 2015). 

  ICRAF 2014 

  2014 2015 

BAPLAN LCC (translated from ICRAF) area [ha] area [ha] 
Burned already 

2014 [ha] 
burned area 

[ha] 

Tree crop plantation 21,981 106,773 3,373 103,400 

Dry land agriculture 20 99 1 97 

Embankment 104 415 3 413 

Grass 1,375 6,130 155 5,974 

Mixed dryland agriculture/mixed garden 1,940 5,351 113 5,238 

No data 514 3,244 66 3,178 

Open land 4,035 11,638 464 11,174 

Plantation forest 4,876 29,276 1,207 28,068 

Primary dry land forest 85 87 2 85 

Primary mangrove forest 116 1,753 29 1,724 

Primary swamp forest 288 2,988 29 2,959 

Rice fields 4,413 13,948 695 13,253 

Scrub 4,415 38,699 1,352 37,347 

Secondary/ logged over  swamp forest 6,301 83,646 1,702 81,945 

Secondary/ logged over dry land forest 659 3,722 48 3,674 

Secondary/ logged over mangrove forest 557 3,081 287 2,794 

Settlement/ developed land 728 3,425 83 3,342 

Water body 1,030 9,122 180 8,942 

          

Sum 53,440 323,397 9,790 313,607 

 


