Monitoring of land use change and GHG emissions on peatlands

Peter Navratil¹, Elizabeth C. Atwood ^{1,2}, Sandra Englhart¹, Eckehard Lorenz³, Werner Wiedemann¹, Florian Siegert^{1,2}

¹ RSS Remote Sensing Solutions GmbH, Isarstr. 3, 82065 Baierbrunn, Germany

² GeoBio Center, Dept. Biology II, Ludwig-Maximilians-Universität Munich, Gro
ßhadernerstr. 2, 82152 Planegg-Martinsried, Germany

³ Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin-Adlershof, Germany

Outline

- Assessment of GHG emissions recurrent from peatland fires
- Planning of peatland rehabilitation by remote sensing
- Firebird & TET: A new satellite system for Near real time monitoring of fires

GHG emissions from peatlands

(WWF, 2009; modified)

Assessment of GHG emissions recurrent from peatland fires

Global Change Biology

Global Change Biology (2016), doi: 10.1111/gcb.13186

Variable carbon losses from recurrent fires in drained tropical peatlands

KRISTINA KONECNY^{1,2}, UWE BALLHORN², PETER NAVRATIL², JUILSON JUBANSKI², SUSAN E. PAGE³, KEVIN TANSEY³, ALJOSJA HOOIJER⁴, RONALD VERNIMMEN⁴ and FLORIAN SIEGERT^{1,2}

¹Biology Department II, GeoBio Center, Ludwig-Maximilians-University, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany, ²RSS Remote Sensing Solutions GmbH, Isarstr. 3, 82065 Baierbrunn, Germany, ³Department of Geography, University of Leicester, Leicester LE1 7RH, UK, ⁴Deltares, Rotterdamseweg 185, 2629 HD Delft, The Netherlands

Fire event	First fire	Second fire	Third fire	Fourth+ fire
Average relative burned area depth (m	-0.17	-0.10	-0.06	-0.02
Mass of peat fuel $(t ha^{-1})^*$	206	115	69	23
Carbon loss value $(t C ha^{-1})^*$	114	64	38	13

Degradation of tropical peatlands

Peatland that has been affected by one or more fires \rightarrow decreasing amount of above-ground fuel potentially available for combustion

Carbon emissions from recurrent fires

Objective

Estimate **peat carbon emissions** from recurrent fires **as a function of fire frequency**.

Carbon emissions from recurrent fires

Peat carbon emissions:

- **A**_n=Total area burnt [ha] per fire frequency n
- **EF**_n=Emission factor [t C/ha] for fire frequency n

IPCC (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi T et al.).

Hooijer A *et al.* (2014) Carbon Emissions from Drained and Degraded Peatland in Indonesia and Emission Factors for MRV of Peatland Greenhouse Gas Emissions –. IAFCP, Jakarta, Indonesia.

© RSS Remote Sens

Remote sensing data and derivates – Overview

Airborne LiDAR data – Acquisition and Preprocessing

• **Optech Orion M200** airborne laser scanner

- **Date:** 15.08.-15.10.2011
- **Area:** ~700,000 ha

Acquisition parameters:			
Laser pulse frequency	100 KHz		
Half scan angle	22°		
Flying height above ground	800 m		
Calculated point density	2.8 pts/m ²		

- Hierarchic robust ground and off-ground point filtering (Pfeifer et al., 2001)
- Linear adaptable prediction interpolation (kriging) for DTM generation (5m spatial resolution)
- Accuracy assessment based on 441 differential GPS measurements → 0.12/0.19m RMSE in forested/burned areas

Pfeifer N, Stadler P & Briese C (2001) Derivation of digital terrain models in SCOP++ environment. Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models.

Spatial Profile of DTM

Spatial Profile of DTM

• Bézier approximation for spatial interpolation of pre-fire elevation

Results & conclusions – Peat carbon emissions

Fire frequency	Depth of burn	EF
1	17 cm	113 t C ha ⁻¹
2	10 cm	63 t C ha ⁻¹
3	6 cm	38 t C ha ⁻¹
≥4	2 cm	13 t C ha ⁻¹

 \rightarrow consistent with field measurements and previous airborne LiDAR measurements (Ballhorn et al., 2009)

Ballhorn U, Siegert F, Mason M & Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. *Proc Natl Acad Sci USA* 106:21213–21218.

Results & conslusions – Total carbon emissions

Fire frequency	EF (total)	% aboveground carbon emissions	% peat carbon emissions
1	207 t C ha ⁻¹	45%	55%
2	77 t C ha ⁻¹	19%	81%
3	42 t C ha ⁻¹	10%	90%
≥4	14 t C ha ⁻¹	7%	93%

Planning of peatland rehabilitation by remote sensing

- Most land uses on peatlands require drainage
- Drainage of peat leads to GHG emissions due to bacterial decomposition and increase fire risk
- Peatland rehabilitation reduces emissions

Peat drainage by logging operations

Mapping peat topography

Mapping peat topography

Mapping of drainage canals

RSS

REMOTE SENSING Solutions GmbH

Planning of dam locations

Development of dam technical design

Planning of dam locations

Dam locations

Water balance

Calculated water table fluctuations

A new satellite system for Near real time monitoring of fires

	MODIS	FireBird/TET	
Fire detection Mode	Monospectral	Bispectral	
Fire detection bands	MWIR: 4.0 μm (2x) LWIR: 10.8-11.3 μm	MWIR: 3.4-4.2 μm LWIR: 8.5-9.3 μm	
Saturation temperature	331 K resp. 500 K 340 K (A), 400 K (T)	>1500K due to adaptive gain control	
Pixel resolution	1,000 m x 1,000 m	160 m x 160 m	
Revisit time (day and night images)	0.5 day	3 days	

Benefits of FireBird/TET

- Better detection through smoke and haze
- Higher sensitivity of low energy fires
- 6x higher spatial resolution

Improved fire detection capability by TET

Peat fires burn at low temperatures and release thick clouds of smoke due to incomplete combustion

Improved fire detection capability by TET

TET image acquired the same day - Massive active fires seen through the haze!

The TET sensor detects many more active fires due to it's higher sensitivity

Detection of active fires using TET

- MODIS under-detecting low intensity fire fronts
- MODIS active fire detection inhibited by thick smoke and haze

First estimate of damage extent

TET 24/09/2015

~ 10 days

TET 5/10/2015

~ 21 days

TET 13/10/2015

~ 29 days

TET 15/10/2015

~ 31 days

TET 18/10/2015

~ 34 days

TET 21/10/2015

~ 37 days

TET 23/10/2015 ~ 39 days

Field data collection by UAV

2015.10.23

Field data collection by UAV

Fire ring propagation

Propagation speed & vegetation type

Before

After

Ground type	Propagation speed (m/day)				
Ground type	Ν	Average	S.D.	Minimum	Maximum
peat+sand					
(depth	14	97.63	87.62	20.50	361.00
unknown)					
peat 0-1 m	30	134.94	131.90	4.62	490.00
peat 1-2 m	77	161.53	172.53	4.09	978.50
peat > 2m	202	187.01	237.82	5.21	1903.50

Potential beneficial effects from peatland rehabilitation

Fire F10 had **lowest** average fire propagation speed (88 m/day)

East and west boundaries of the F10 and F11 fires correspond to dam locations

F12 fire occurred on thin peat layer overlying sand
➢ Reduced dampening effect

SPOT-5 2015-07-04

RapidEye 2012.07.29

TET-1 2015.10.15

Landsat-8 2015.08.19

Landsat-7 2015.10.14

Spread of fire in Ex MRP area

TET-1 time series

2015.10.15

2015.10.21

Spread of fire in Ex MRP area

Several sources of ignition...

Spread of fire in Ex MRP area

Three weeks later:

... lead into one large fire line fronts

Measured propagation speeds were in excess of 500 m/day

First estimate of damage extent

Oil palm concessions within study area

Conservation area --- Sebangau national

Landsat area burned classification

Newly burned Burned prior to 2015-08-19

Fire monitoring

- TET-1 detects **twice** as many active fires as MODIS hotspots
- High spatial resolution allows more accurate delineation of burning areas
- Enables measurement of fire behavior (size & speed of fire fronts)
- Better identification of low energy peat fires
 (sensor sensitivity 0-1000 MW, bispectral method)
- Improved estimates of fire emissions (FRP)

Near real time monitoring by Firebird constellation

- Early detection of fire: midday and afternoon
- Early detection of fires while still small
- Enable quick firefighting response
- Improved fire control management
- Law enforcement: identify origin of fire

Near real time monitoring by Firebird constellation

Thank you for your attention

RSS - Remote Sensing Solutions GmbH Isarstrasse 3 82065 Baierbrunn (Munich)

navratil@rssgmbh.de www.rssgmbh.de

Publication available under http://dx.doi.org/10.1371/journal.pone.0159410