SURVEY OF BIOMASS, CARBON STOCKS, BIODIVERSITY, AND ASSESSMENT OF THE HISTORIC FIRE REGIME FOR INTEGRATION INTO A FOREST MONITORING SYSTEM IN SOUTH SUMATRA, INDONESIA

Assessment of historic fire regime Current status

BIOCLIME Workshop Palembang 21 January 2016

> Sandra Englhart Peter Navratil Mathias Stängel Florian Siegert

RSS Remote Sensing Solutions GmbH Biodiversity and Climate Change Project

giz

Concept of the monitoring system

BUTIONS GMBH

Objectives:

- Utilize historic satellite data from 1990 onwards
- Assess burned areas on an annual basis for all "fire years"
- Quantify fire occurrence and impact for each fire year
- Correlate with data on biodiversity and carbon stock and assess impact on these factors

Fire regime workflow

Determination of fire-intensive years

Landsat tiles

- 5 Landsat tiles
- Landsat-5, Landsat-7, and Landsat-8

Image processing

- Atmospheric correction
- Cloud masking
- Object-based classification with hierarchical rule-set based on burn ratios

Burn ratios

Burn ratios

Burn ratios

Classification approaches

- Object based classification based on single scene using burn indices (BR1, BR2, NBR)
- Object based **multi scene** change detection $(t_1 t_2)$ (based on NDVI and NBR) and classification
 - Based on paper by MELCHIORI et al. (2014): A Landsat-TM/OLI algorithm for burned areas in the Brazilian Cerrado: preliminary results
 - Every scene compared to each other within one year
 - The final Classification is a combination of these two approaches to grant high accuracy and diminish false positives
 - > No cloud masking necessary

Landsat-7

 On May 31, 2003, the Scan Line Corrector (SLC), which compensates for the forward motion of Landsat 7, failed

- Total number of scenes
 - Fewer scenes mean smaller area to classify and lower probability having a cloud-free scene

Single scene approach

- In unique situations **cloud shadow** is falsely classified as burned area
- Limitation by haze
 - Haze leads to low detection of burned areas
 - Not a problem for the multi scene approach

Multi scene approach

- Bare areas in oil palms plantations can be classified as burned
- Both scenes have to be cloud free for classification
- Usually high cloud cover percentage in tropics
- This "problem" is tackled via change calculation of all possible combinations $t_1 t_4 \,|\, t_2 t_4 \,|\, t_3 t_4$

Multi scene approach

- Bare areas in oil palms plantations can be classified as burned
- Both scenes have to be cloud free for classification
- Usually high cloud cover percentage in tropics
- This "problem" is tackled via change calculation of all possible combinations
 - $t_1 \text{-} t_4 \mid t_2 \text{-} t_4 \mid t_3 \text{-} t_4$

Classification approach

- The combination of both approaches represents a robust approach which overcomes the respective limitations of the singleand the multi-scene approach
- The results are merged for each month and each year
- **Manual editing** needs to be conducted to grant high accuracies and to overcome the limitations

1997-2014 frequency

Summary of burned area

Year	No. Scenes	Hotspots	Total Area Burned [ha]
1997	18	16,573	334,340
1999	30	1,888	64,089
2002	37	2,216	119,442
2004	46	2,515	130,320
2006	46	5,494	243,922
2009	57	1,875	68,384
2011	40	2,592	89,499
2012	29	3,319	164,439
2014	41	1,755	53,557
2015	-	8,582	-

Overview

Next steps: Determination of fire regime

- Fire frequency: Cumulative merge and intersection of annual burned areas
- Pre-fire vegetation: Superimpose land cover classification and LiDAR dataset
- Annual burned area

Next steps: Estimation of historic fire emissions

- Superimpose LiDAR derived AGB map with fire frequency
- Superimpose peat map (SSFFMP project)
- Calculate regional emissions from fire for different forest types, fire severity and fire frequencies

- Challenge: Dense haze cover in late fire season prevents/ hampers the use of optical satellite data
- Solution: Multitemporal Sentinel-1 RADAR data

Sentinel-1 VH, VV 13.08.2015 Pre-fire scene

Sentinel-1 VH, VV 30.09.2015 Post-fire scene

Sentinel-1 Composite Pre-fire/post-fire/PCA

Sentinel-1 Composite Pre-fire/post-fire/PCA

Thank you for your attention

W. S. MANNA

RSS - Remote Sensing Solutions GmbH Isarstrasse 3 82065 Baierbrunn (Munich)

englhart@rssgmbh.de www.rssgmbh.de

Selection of Landsat data:

- For period of fire season until 2 months after
- Landsat-5, Landsat-7 and Landsat-8
- If not enough images: images before next fire season from following year will be considered

Band ratios to be used:

BR1 = (b0.84 μ m - b11.45 μ m) / (b0.84 μ m + b11.45 μ m)

where b0.84 μ m is the reflectance value of Near Infrared (0.76-0.90 μ m) and b11.45 μ m is the reflectance value of Thermal Infrared (10.4-12.5 μ m).

BR2 = $(b0.84\mu m - b2.22\mu m) / (b0.84\mu m + b11.45\mu m)$

where b0.84 μ m is the reflectance value of Near Infrared (0.76-0.90 μ m), b2.22 μ m is the reflectance value of Mid-Infrared (2.08-2.35 μ m) and b11.45 μ m is the reflectance value of Thermal Infrared (10.4-12.5 μ m).

NBR = $(b0.84\mu m - b2.22\mu m)/(b0.84\mu m + b2.22\mu m)$

where b0.84 μ m is the reflectance value of Near Infrared (0.76-0.90 μ m) and b2.22 μ m is the reflectance value of Mid-Infrared (2.08-2.35 μ m).

Analysis of fire season of each year:

